skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kravchuk, Pavlo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Actin filament assembly and mechanics are crucial for maintenance of cell structure, motility, and division. Actin filament assembly occurs in a crowded intracellular environment consisting of various types of molecules, including small organic molecules known as osmolytes. Ample evidence highlights the protective functions of osmolytes such as trimethylamine‐N‐oxide (TMAO), including their effects on protein stability and their ability to counteract cellular osmotic stress. Yet, how TMAO affects individual actin filament assembly dynamics and mechanics is not well understood. We hypothesize that, owing to its protective nature, TMAO will enhance filament dynamics and stiffen actin filaments due to increased stability. In this study, we investigate osmolyte‐dependent actin filament assembly and bending mechanics by measuring filament elongation rates, steady‐state filament lengths, and bending persistence lengths in the presence of TMAO using total internal reflection fluorescence microscopy and pyrene assays. Our results demonstrate that TMAO increases filament elongation rates as well as steady‐state average filament lengths, and enhances filament bending stiffness. Together, these results will help us understand how small organic osmolytes modulate cytoskeletal protein assembly and mechanics in living cells. 
    more » « less
  2. Actin plays critical roles in various cellular functions, including cell morphogenesis, differentiation, and movement. The assembly of actin monomers into double-helical filaments is regulated in surrounding microenvironments. Graphene is an attractive nanomaterial that has been used in various biomaterial applications, such as drug delivery cargo and scaffold for cells, due to its unique physical and chemical properties. Although several studies have shown the potential effects of graphene on actin at the cellular level, the direct influence of graphene on actin filament dynamics has not been studied. Here, we investigate the effects of graphene on actin assembly kinetics using spectroscopy and total internal reflection fluorescence microscopy. We demonstrate that graphene enhances the rates of actin filament growth in a concentration-dependent manner. Furthermore, cell morphology and spreading are modulated in mouse embryo fibroblast NIH-3T3 cultured on a graphene surface without significantly affecting cell viability. Taken together, these results suggest that graphene may have a direct impact on actin cytoskeleton remodeling. 
    more » « less